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THE VACUUM ULTRAVIOLET RADIATION FROM N*- AND O+-ELECTRON
RECOMBINATION IN HIGH-TEMPERATURE AIR

By Gerhard E. Hahne
Ames Research Center

SUMMARY

969‘53

A free electron may, while interacting with an Nt or an oOF ion, fall
into the 2p shell to form a bound state of a neutral N or a neutral O
atom, respectively, the trans1t10n belng accompanied by the emission of a
gquantum of light. If the Nt or oY ion is initially in a state of its ground
conflguratlon, for allowed tran51tlons, this light will be of wavelength
A <1130 A for nitrogen, and A < 911 A for oxygen (i.e., in the region of
vacuum ultraviolet wavelengths).

The first step in estimating the contribution of such transitions to the
rate of radiation of heated air was to calculate the cross sections for the
inverse, photoionization processes, using the general formula of Burgess and
Seaton. Given the composition of a sample of air, its absorption coefficient
can be calculated from these photoionization cross sections, and if local
thermodynamic equilibrium is assumed, the rate of radiation of air due to the
corresponding recombination processes follows from Klrchhoff's law. ThlS rate
of radiation, integrated over the wavelength region from 400 A to 1130 A, has
been calculated for air at several temperatures between 8, 000° K and 24,0000 K
and several densities between 107® and 102 standard atmospheres for each
temperature.

In addition, data have been tabulated to facilitate calculation of the

intensity (integrated over wavelength) of vacuum ultraviolet wavelength light
at the surface of uniform (constant temperature and density) "thick" boi};&””//’

of heated air.
INTRODUCTION 4 /

Photorecombination of low-energy electrons with singly charged nitrogen
or oxygen ions into low-lying states of the corresponding neutral atoms will
give rise to light in the vacuum ultraviolet wavelength region. The range of
temperatures and densities taken by the hot-gas cap forward of a blunt vehicle,
moving into the earth's atmosphere at speeds of the order of escape speed, is
such that these atoms and ions may dominate the population of species present
there. ©Should this be the case, and depending on the cross sections for the
above-mentioned recombination processes, large amounts of vacuum ultraviolet
light may be emitted by the air in the gas cap, thereby imposing a significant
heating load on the vehicle.

A-992



13

Calculations of the air radiation arising from this source have been
carried out by Nardone, Breene, Zeldin, and Riethof (ref. 1), and by Sewell
(ref. 2). The predictions in these two works are not in close agreement; the
former work shows radiation rates sometimes six times larger, despite the fact
that Sewell has also included the relatively long wavelength light emitted in
photorecombination of electrons into some higher excited states of nitrogen
and oxygen.

In view of both the above-mentioned discrepancies and the development by
Burgess and Seaton (ref. 3) of a semiempirical formula which enables the rapid
calculation of approximate atomic photolonization cross sections, further
study of this problem seemed not only desirable but capable of yielding
plausible results with modest effort.

The present investigation was undertaken, then, to carry out the follow-
ing tasks: first, using, in particular, the formula of Burgess and Seaton,
to calculate the cross sections for photoionization of nitrogen and oxygen
atoms from certain low-lying quantum states; second, to apply these photo-
ionization cross sections toc the calculation of the rate of radiation of air
due to the inverse, recombination processes; third, to compare the results
obtained with the corresponding results of other authors and to discuss the
underlying methods used in the several calculations.

SYMBOLS
ao = 1%/me® first Bohr radius of the (infinite nuclear mass) hydrogen atom
B(A1s72) integral of By re A over the wavelength range A1 <A <Az
BA,BA(T) Planck black body distribution of light energy flux
Cy dimensionless constants, depending on terms of initial atom and

final ion, etc., which arise in the calculation of atomic
photoionization cross sections from central field wave

functions

c speed of light

E energy parameter' in a radial Schrodinger equation

e absolute value of the charge on the electron; base of Naperian
logarithms

F(r,E) function (bound state or continuum type) satisfying a radial

Schrodinger equation in which the energy parameter is E

1
These energies will be given as dimensionless multiples of the Rydberg
unit, one unit being me*/2h2, or about 13.605 electron volts.
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k(A 1,02)

2,11

Nn:

n*

o(x)

IM\1,A2,L)/B(A1,N\2) where T and p are given and Tixed

continuum one-electron radial wave function

Planck!s constant
n/2n

threshold energyl for ionization of an atom by removal of an
nl shell electron

spectral distribution of light energy flux; monochromatic
intensity

integral of I)(L) over the wavelength range A1 <A < Ap

J(A1,N\2) if A1 and Ao are given and fixed

monochromatic emission coefficient, or spectral radiance, of a
sample of gas

integral of J, re A over the wavelength range A1 < A <Az

Boltzmann's constant; absolute value of the square root of the
kinetic energyl of a free electron

absorption coefficient of a gas at wavelength A

absorption coefficient corrected for stimulated emission

mean absorption coefficient in the wavelength range
N1 <A < As; k(0,0) = Planck mean absorption coefficient

length of a light path

1/k(N1,\o) where T,p,A1,A\2 are given and fixed

distance along a light path; one-electron angular momentum
quantum numbers

electron mass

number of electrons in an atom or ion

normalization constant for a bound state radial wave function
principal quantum number (integer, > 1)

effective principal gquantum number (real, > O)

loosely speaking, a term of the order of x where X is real,

>0

1See footnote 1, page 2.



P, 7sPni(r) bound state radial wave function

r distance, in dimensionless multiples of &g, from the nucleus
of an atom

T, effective radius of the core of an atom or ion

T absolute temperature

V(r) effective potential energy! function

Z atomic number of a nucleus

o = e /ffc Sommerfeld's fine structure constant; also used as L/Lg

r(z) the gamma function of the complex number z

A welighted mean sgquare fluctuation of the absorption coefficient
8;,8:(%k2) phase shift

€,c! energyl parameter for a one-electron quantum state; related to

E and ¢ by € = E/t2

¢ Z - N+ 1 for an atom or ion with atomic number Z and N
electrons
A wavelength of a quantum of light
! quantum defect
o} air density
Pq standard density of air, 1.225x1072 g cm™3
g cross section
THEORY
Processes

The recombination (and corresponding photoionization) processes treated
in the present work are those for which there is initially (or finally) a
free electron in the presence of a singly charged nitrogen or oxygen ion in
one of the states of its ground configuration, and for which the final
(initial) state consists of a neutral nitrogen or oxygen atom in a state
belonging to its ground configuration, plus a photon. Since fine structure
effects are small, these transitions are conveniently grouped according to the
total orbital and spin angular momenta of the ion and atom; there will be six

groups of allowed transitions (in the dipole approximation) for each of the
two atoms. In nitrogen these are:

lsee footnote 1, page 2.




(a) 1s22522p2(3P) + free electron ——=15%2522p3(%5°) + photon

(v) 1s22s22p2(°P) + free electron ———=1522522p2(%D°) + photon

(c) 1s22s22p2(?D) + free electron ——=152522p%(%D°) + photon

(a) 1s22522p2(®P) + free electron =—=1520520p3(2P°) + photon

(e) 1s%2522p2(ID) + free electron ~1520522p3(2P°) + photon

(£) 1s®2s®2p=(*8) + free electron <—=1522522p%(2P°) + photon
The longest photon wavelengths for which the above can occur are called the
threshold wavelengths. For the above transitions, the threshold wavelengths
are: (a) 852 &, (p) 1020 &, (c) 883 &, (@) 1130 A, (e) 964 A, (£) 826 A.

In oxygen, the transitions are:

(a) 1522522p3(4so) + free electron —-——»15°2522p%(%P) + photon

(b) 1522822p3(®D°) + free electron ——15%2522p* (°P) + photon

(c) 1s22522p3(3P°) + free electron -—1522522p* (°P) + photon

(a) ls22822p3(2Do) + free electron ———=1572522p%(*D) + photon

(e) 1s22522p3(2P°) + free electron ~—»1522522p* (D) + photon

(£) 1s22822p>(®P°) + free electron.—*———a—lSZESZEpQ(lS) + photon

The corresponding threshold wavelengths in oxygen are: (a) 911 A, (b) 732 A,
(c) 666 A, (a) 828 R, (e) Tk A, (£) 858 A.

The above wavelength thresholds have been calculated from data in refer-
ence 4. The energy of a term was taken to be the center of gravity® of its
fine structure levels.

One of the selection rules for dipole transitions requires that Al = *1
for the jumping electron, so that the free electron wave functions will be
either s wave or d wave, for the above transiticns.

General

Milne's formula (refs. 5 and 6) relates the cross section for radiative
recombination of a free electron and positive ion into a state of the

2The center of gravity of a set of n levels with energies E; and

n
statistical weights g3, 1 =1, 2, . - . , n, is defined as giEi/Zgi.
i=1 1=1
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resulting atom to the cross section for the reverse, photoionization process.
The latter cross section is more convenient to work with since it has a finit:
discontinuity at the threshold.

In the central field approximation for the wave function of an atom or
ion, the cross section for absorption of a photon of energy I, + k=,
together with excitation of an electron from an ni? shell to the continuum,
can be expressed in terms of one-electron radial wave functions as follows
(ref. 3):

2

\/PW Py i(r)rGryr (r)ar (1

e}

o = 4_;@ ac2(Iy; + ¥2) z Cyr

1'=1x1

where o 1s the total photoionization cross section; I,; and kz, both in
Rydbergs, are the threshold energy for ejection of the nl shell electron, amn
kinetic energy of the ejected electron, respectively; the Cyr are certain
coefficients that depend on 1,1' and the states of the initial atom and
residual ion (see ref. 3); Ppi(r) is the radial wave function of an nl shel:
electron, satisfying

|
@]

P, 1(0) = Pyy(e) =

fo
P (r)ar
nl

The functions szl(r), with 1' = 1 £ 1, are continuum radial wave functions
Tfor the free electron in the field of the ion core, satisfying

(2a,

]

and

I
=

(2p,

Grz1(0) = 0 (3.

and are normalized by requiring their asymptotic amplitude for large r +to be
k-1/2,

Both P,; and Gy;+ satisfy a radial Schrddinger equation of the type
(omitting exchange terms)

2

%gmh£)+h—vw)-ﬂ%;ﬂkﬂmm=o (4!

where for the continuum functions E = k2 1is the free electron's kinetic
energy; for bound states E will be negative, and is chosen so that the
boundary conditions (2a) can be satisfied. The quantity V(r) is an effective
potential energy function for the jumping electron, and may be different for
different states of the core and jumping electron; V(r) must have the asymp-
totic form of a Coulomb potential for large r:

V(r)— - 28 (5.

r - T ’




where for an atom with a nuclear charge of Z units, and a total of N
electrons, { = Z - N + 1. Therefore, the asymptotic forms of the radial wave
functions in the continuum are (ref. 7)

. t 'x . € K=
51n[£r + 7 log 2kr - 5 +arg 1" +1 - 1 * + 071 EE

szv(r);-—:; (6)
JE

where ®3:(k2/t®) is a phase shift which would be identically zero if V(r)
were an exact Coulomb potential function. For the bound state functions

(ref. 8)

Pnl(r)r - 00 anrn*e—r/n* (7)

where N,; 1is a normalization constant which is determined by condition (2b),
and n¥, an effective principal quantum number, is determined from the eigen-
value E (of the radial Schrddinger equation satisfied by Pnz) by the
following formula:
n¥ = —EL— (8)
J-E

We note that the guantum defect p for a level with principal quantum
number n is defined as follows:

b =1 - n¥ (9)

where p depends on n and 1, and will be zero for the states of hydrogen-
like atoms. The gquantum defects for a series of levels in an atom will often
be found to lie on a smooth curve if plotted as a function of energy E, and
will tend to a finite limit as n = « (see refs. 7 and 9 for details and
examples) .

The Coulomb Approximation

Now it is generally a difficult task to obtain a reasonably accurate
potential energy function V(r) for a given nl shell wave function in a
given atom or ion. Moreover, it has been found (refs. 3 and 8) that for a
wide class of radiative transitions, the principal cocntributions to the dipole
length integrals in equation (1) come from r large enough that V(r) has
essentially reached its asymptotic Coulowmb form. Therefore, except as it
indirectly influences the behavior of the radial wave functions for large r,
the detailed behavior of V(r) for small r may be unimportant.

Given the gquantum nunber 1, only two quantities are needed to determine
a bound state radial wave function in this region (i.e., the region for which
r is so large that eg. (5) holds), the normalization constant Npi, and the
energy parameter E. For a continuum state radial wave function, 1' and the
wave number k are given, and only the phase shift 8;:(k3/t?) is needed.



Once these quantities are known for the states of interest, the integrals in
equation (l) can be approximated by neglecting the contributions for r less
than the radius r, at which the potential energy V(r) begins to depart
significantly from its asymptotic form. This approximation is known as the
Coulomb approximation.

A1 this would be of little practical interest, however, if it were not
for the fact that all of the determining quantities for the asymptotic forms
of the radial wave functions may be inferred from empirical data on atomic
energy levels. A means of doing so for bound state wave functions was given
by Bates and Damgaard (ref. 8) as a part of their development of the Coulomb
approximation for bound-bound transitions (see also ref. 10). Subsequently,
Seaton (ref. 7) showed that the Bates-Damgaard formula for normslizing bound
radial wave functions was good only in the limit of large principal gquantum
number, and at the same time gave a more accurate formula. A method for
determining bound-state energy parameters from empirical data which is some-
what more explicit than the Bates-Damgaard prescription is made plausible in
appendix A of the present work.

For free-electron wave functions Seaton (refs. 7, 11, and 12), using the
theory of the quantum defect method developed in a different context by Ham
(ref. 13) and others, showed that the phase shifts for continuum functions
could be obtained by extrapclation to positive energies of wn times the quan-~
tum defect® for the corresponding bound state functions. Subsequently,
Burgess and Seaton (refs. 3 and 16) developed a general formula for calculat-
ing bound-free transition integrals in the Coulomb approximation; their
results were used in the present calculation, and are outlined below.

Burgess and Seaton define the quantities g(n¥*l;e'l') in terms of the
radial matrix elements as follows:

g(n*l;e'lt) = Inzk/ﬁ P, ;(r)rGgy (r)dr (10)
o

n¥* = {/\/I,; is the effective principal quantum number of the initial state
wave function, I,; 1s the threshold energy for the photoionization process
in question, and k2 = €'¢® is the kinetic energy of the final state free
electron. We note that g(n*l;e'l') has no explicit ¢ dependence. Formula
(1) for the cross section becomes

I,; + k2
iq}
1'=1%t1

SThis is valid only for small positive energies, such that 2xf/k >> 1;
Seaton (ref. 7) gives a more elaborate formula connecting p'(e') and d'(e'),
where €' = k2/(?, for the general case. See also Moiseiwitsch (ref. 14) and
Norman (ref. 15).
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Burgess and Seaton give the following interpolation formula for the
g{n*1;e'1"):
G(n*l;e'1')

g(n*1;e'l") =
pY/2(nx,1)

cos n[n* + pu'(e') + x(n*;e'1")] (12)

i+ — *
Gln*2 e 1t) = (<1) T aypi (o) (1 + erna®) 72 (0%) (13)
X(a*g e 2t) = Xgqa(n%) + —EBE g o €M 5 (nx) (14)
1 + e'n¥ 1 + e'n*@

where p'(e') is the extrapolated quantum defect of the n'l' series. The
quantities Gyyr(n¥), 7;5:1(n%), ayyr, B111(n¥), x731(n¥) are tabulated in
reference 3, and

o(n¥,1) =1 + -2 %e_) (15)
<

n*3

in equation (15), u(e) is the interpolated quantum defect for the nl series,
and the derivative is evaluated at

I
e-_. 1 . _ I (16)

I being the absolute value of the energy of the jumping electron in its
initial bound state, or, what is the same, the threshold energy of the
photoionization process considered (see appendix A).

The energy levels from which the € and n¥ values were calculated® were
taken from Moore (ref. 4); the values of

1/2
Cyrs G”:(n*)/(n* - 1) s 7lzx(n*), Xna(n*), a7t BZZ'(H*)

were obtained from tables II, VII, and VIII of reference 3, by graphical
interpolation or extrapolation of that data if necessary; the values of
01/2(n*,1)/(n* - 1)1/2 were calculated using the following formula, given in
reference 7, and proved in reference 17T:

_(n* = 1)(n* +2)

oax, 1) - (22—l (17)

This is a good approximation for p{(n*,1) if n* is close to 1 for a 2p
wave function.

4Fine structure splittings were neglected; the energy of a term was taken
to be its center of gravity.
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In obtaining the values of the parameters in the Burgess-Seaton formulas
from the tables in reference 3, it is sometimes necessary to extrapolate
functions of the effective principal quantum number n* which are tabulated
only for somewhat widely spaced values of n¥*. In particular, the cross
sections calculated here are sensitive to the value taken for Glz(n*) for
n* close to 1.0, as obtained from table VIII in reference 3. We have assumed
that the curve of the function Gis(n*)/(n¥* - 1)1/2 has zero slope at
n* = 1.00.

The lack of knowledge of a sufficient number of atomic energy levels
prevents reliable extrapolation from being made for many series in NI and 0I;
this is true, in particular, for series in which the ionic core is not in a
state of the lowest term of its ground configuration. As a rough approxima-
tion for these cases, the quantum defects have been chosen to be 0.0 for d
functions, 1.0 for s functions. The effect of any errors thereby incurred
is mitigated by the fact that these Nt~ or Ot-electron recombination
processes, in which the ion is not initially in its ground term, give rise to
relatively small contributions to air radiation; in turn, this is due to the
low populations of the excited core states for all but the highest tempera-
tures considered here.

For the series in NI in which the core structure is 1s522522p2(3P), and
series in OI in which the core is 1s22522p3(%*S°), many of the energy levels,
where the outer electron is ns or nd, are tabulated in reference 4, volume I,
with additions and corrections in volumes II and III. Also, Kvifte (ref. 18),
and Eriksson and Isberg (ref. 19) have given new or revised energies for
some levels of the series 2p3(48°) ns and 2p®(*S°) nd in OI; new or revised
energies for a number of levels in NI can be found in Eriksson (ref. 20) and
Eriksson and Johansson (ref. 21).

For OI the calculation and extrapolation of the quantum defects is
relatively straightforward since the *SO core has no fine structure. The
quantun defects used in the present calculation were (ref. 19):

For the series 1s%2522p2(*8°) ns 3g°

u'(e') = 1.1499417 - 0.0816399¢" + 0.047241e'® + 0.043095¢1° (18a)

For the series 1s5%2s22p°(®*s®) nd 3D°
p'(e') = 0.0242064 + 0.050812¢!' + 0.01301e!® - 0.000011576(e! + 0.079224) 7L

(18v)

For NI the situation is less satisfactory. Here there are three
closely spaced series limits as a result of the fine structure of the 3P
core, and, correspondingly, there are serious departures from LS coupling
for high series members (ref. 9). It is particularly important to have good
energy values for the levels of the 2p2(®P) nd series since it turns out
that the probability of a radiative transition from a 2p to a continuum d
state is usually somewhat greater than from a 2p to a continuum s state

10




for the processes considered here. There are some gaps and uncertainties in
the series levels which are given by Moore (ref. 4, vol. I), and the term
values of ns and nd series are given in references 20 and 21 for levels of
the 2p2(3P) 3d, 3s, 4s, and 5s configurations only. In the absence of data
which would allow a more refined treatment, the method decided upon was to
extrapolate the quantum defect of the center of gravity of all the levels of
2p2(®P) ns or nd. The threshold energy for ionization was considered to be
the center of gravity of the three series limits. The gquantum defects calcu-
lated in this manner were found to be reasonable only for the lower series
members, for which the various level splittings are small compared to the
binding energy for the nl electron. The extrapolated gquantum defects
obtained by representing the results for n = 3, 4, and 5 by a straight line
were:

Tor the series 1s5°25°2p2(%P) ns

u'(e') =1.13 - 0.10e? (192)
and for the series 1s522522p=(®P) nd

p'(e') = 0.037 (19v)

These formulas for quantum defects of nitrogen series, and those for
series in oxygen, are probably valid at best for €' < 0.5, a condition about
as restrictive as the condition exp(-2mAf€’) << 1, which limits the validity
of the extrapolation of = times the gquantum defects into the continuum phase
shifts (ref. 7). The photoionization cross sections for N and 0, calculated
using these quantum defects, are, therefore, likely to be in error for
k2/t2 of the order of, or greater than, 1. These errors will not be impor-
tant at the lower of the temperatures considered here since most of the corre-
sponding recombination light from air will come from recombination of ions
with low energy free electrons, so that it is sufficient to have accurate
knowledge of the photoionization cross sections near threshold only. For the
higher temperatures, our results will be less reliable.

We are now in a position to calculate approximate photoionization cross
sections for all the processes in nitrogen and oxygen to be considered in the
present work. Once the concentrations in air of the relevant species are
known as a function of temperature and density, we will be prepared to use
these cross sections for the calculation of macroscopic radiative quantities.
These subjects are considered in the following two sections.

Populations

Among the sets of data on the composition of air knmown to us, the graphs
given in the work of Sewell, et al. (ref. 22) give compositions for the
widest range of densities (1076 < p/p, < 102) and finest mesh of temperatures
in the region of interest here, and we have consequently used reference 22 as
the exclusive source of these data.

11




It turns out (see next section "Radiative Transfer") that for the purpose
of the present calculation, it is sufficient to know, as a function of air
temperature and density, first the number densities of neutral nitrogen and
oxygen atoms, and second, the fraction of nitrogen atoms which are in states
of each of the three terms (®8°,2D°,2PC) of the ground configuration of nitro-
gen (1s22s522p3), and the fraction of oxygen atoms which are in states of each
of the three terms (8P,1D,15) of the oxygen ground configuration (1s22s%2p*).
The first of these sets of data can be calculated directly from the molar con-
centrations given in reference 22, but fractional populations were not given
there, nor was there given an explicit prescription for calculating the atomic
partition functions. However, it was implied that a fixed, finite number of
states were used to calculate the partition functions, and we have verified
this by calculating the equilibrium constants in the Saha equation (see, e.g.,
ref. 23) for the reactions N = Nt + e, 0O = 0% + e~ from the composition
data in reference 22 and observing that these equilibrium constants did not
vary significantly as a function of density, for fixed temperature (there were
often unsystematic variations of a few percent, resulting in part from uncer-
tainties in reading values from the graphs, and in part from unknown causes) .

The atomic energy levels used to calculate partition functions in
reference 22 were taken from Moore (ref. 4). Since the partition function
either for Nt or for 0% is relatively insensitive, at temperatures
T < 25,0000 K, to the criterion for truncating the respective sum over states,
it is possible to work backward from the Saha equation and deduce the parti-
tion function, and hence the truncation criterion, for either N or 0. It
was found that the partition functions for both N and O were calculated, in
reference 22, by including all states whose energies were less than roughly
105,500 cm~1 above the respective ground states. (It is seen from the tables
of Moore (ref. 4), that this energy is just greater than that of
1s%252p (°P) 3d 2Dg /5 in nitrogen and 1s22522p3(%5°) 54 SDOSJZ} , in
oxygen.) These partition functions were used to calculate the needed frac-
tional level populations.

We note that as far as reference 22 and this paper are concerned, cold
air consists of 78.0881 percent Ns, 20.9795 percent Os, and 0.9324 percent
Ar (these are mole percentages), and the standard state of air is that for
which the pressure is 1 atmosphere (= 1.01325X108 dyne cm~2), and the tem—
perature is 288.16° K, so that p, = 1.225X1073 g cm-3.

Radiative Transfer
In order to present the results of this study in usable form they will
be expressed in terms of macroscopic radiative quantities which arise in the

context of a radiation flow problem which we now briefly present and discuss.®

The radiative transfer problem which we will solve consists in finding
the flux of radiant energy emitted at any given point on the surface of a body

"Much of this theory is developed in more detall in the texts of Unsdld
(ref. 24) and of Chandrasekhar (ref. 25).
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of gas, and in any given direction through the point on the surface. The gas
will be assumed (l) to have local temperature and composition which do not
vary in time or within the spatial limits of the body, (2) to be isotropic in
its interaction with radiation, and (3) to interact with radiation only in the
form of processes of simple absorption and spontaneous or stimulated emission
(scattering will be neglected). The emission and absorption of radiation will
be assumed not to perturb the state of temperature or composition of the gas
significantly. Finally, the radiation flow field will be assumed to have zero
inward flux at the surface of the gas body.

We remark that these assumptions imply that any radiation present in the
system will be unpolarized. The assumption of zero inward flux at the surface
of the body requires that the body be convex (i.e., the straight line segment
connecting any pair of points in the body must lie entirely within the body).

The probability per unit length of absorption of a photon of wavelength
A in the gas is k), where

k) = z NgOgq (M) (=20)

S,a

The sum ranges over the states (a) of each species (s) in the gas; ngg 1s the
number density of, and ogyg 1s the photon absorption cross section for,
particles of species s, in state «.

We let I, be the monochromatic intensity of radiation flux at a given
point, and in a given direction through the point, the dimensions of I)
bveing (energy)(area) L(time) 1(solid angle)  *(wavelength)~l. The monochro-
matic emission coefficient at a point of the gas, and in a given direction
from the point, J), has the dimensions (energy)(volume)~ 1(time) 1(solid
angle)” Y(wavelength) *t.

In the system being considered, the radiation flow is such that the
equation of radiative transfer may be written in terms of the flux Ix(l) of
radiation along any given directed line, where ¢ 1is a measure of distance
from some fixed point on the line. The situation is illustrated in sketch (a).

Directed line segment

Surface
Sketch (a)
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The equation of radiative transfer along the directed line segment within
the body is (ref. 23, p. 98; ref. 24, p. 107; ref. 25, p. 12):

Eééill = -k (1) + 3y, (21)

where kj' 1s the absorption coefficient corrected for stimulated emission,
JX is the monochromatic emission coefficient (neither k)" nor J, depends
on position or direction within the gas body) , and I, 1s the flux of radia-
tion at a point 11 on the line segment and in the direction of the line
segment .

On account of the assumption of thermodynamic equilibrium at temperature
T in the gas, k) and k\' are related by

ky' = [1 - exp<} %ﬁ% } I, (22)

and J% is given in terms of k%' and the Planck black body function B%(T)
according to Kirchhoff's law:

I\ = k) "By(T) (23)

The quantity B)(T) is of the same type as I, and

2he? -t
B%(T) = ;; [exp<%§% —l] (2h)
The equation of radiative transfer now becomes

an, (1)

i -k '[1,(2) - By(T)] (25)

If, as in sketch (a), we take 1 = 0 to be on the surface of the gas
body and to be the tail end of the directed line segment, and ¢ =L to be
on the surface and to be the head end of the line segment (L >0 is called a
diameter of the body, and is well defined on account of the body's convexity),
the condition that no radiation enters the body at the surface implies that
In(0) = 0. The solution of equation (25) is, for this case,

Li(2) = B (T - exp(-k '2)] (26)

The flux of radiation leaving the body at the point of its surface correspond-
ing to 1 =L on the given line segment, and in the direction of the line
segment, is Iy (L), where

(L) = BA(T) (1 - exp(-kp'L)] (27)
1k




In the following discussion, since the temperature T will be uniform
in the radiating media to be considered, we suppress the variable T.

It is easy to see from equation (27) that for a given wavelength A\, if
'L > 1, IX(L) ~ B); that is, this part of the radiation flux at the surface
of the body approaches black body radiation. If, on the other hand, kx'L < 1,
we have

I\ (L) = k'Bp\L + 0[(k\'L)Z1B) (28)

Should the condition k)'L << 1 hold for every diameter of the body (L being
the length of a diameter), the gas body is said to be optically thin at wave-
length A. Using equation (28) an integration shows that the monochromatic
rate of emission of light energy by the body as a whole will be, neglecting
terms in (k%'L)z,

rate = MﬂVk%'B% = MnVJx (29)

where V is the volume of the body. This result is, of course, consistent
with the definition of Jy.

The relation Jp\ = k%'B% makes it possible to express the monochromatic
emission coefficient, resulting from recombination of Nt and OT ions with
electrons in a body of air in thermal equilibrium, in terms of the concentra-
tions of, respectively, N and O atoms. We will take advantage of this fact
(in figs. 3 and 4) by giving the monochromatic emission coefficient per atom
of nitrogen or of oxygen.

We have now developed the theory of radiative transfer to the point that
we are able to calculate the monochromatic flux Ik of light energy leaving
a uniform (constant T and p) thick body of heated air at any given point of
the surface of the body, and in any given direction. For some applications,
it is sufficient to know only the integral over wavelengths of this flux. The
remainder of this section is devoted to the introduction and relation of
radiative quantities which arise in this context. Numerical values for some
of these quantities are given in the graphs and tables as functions of air
temperature and density, and, where applicable, as functions of the diameter
L which a thick body of heated air may have in some given direction.

The Planck mean absorption coefficient is defined as follows:

_ ) “Z: k%'BK an ‘
kPlanck oo (jO)
j B, a\

(0]
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In the present study, however, only a limited region of the wavelength
spectrum will be considered, say Ai < A < Az; a natural definition of the
mean absorption coefficient for this case is

=
ky "By dA
= A
k(A1hg) = —2 (31)
A2
dA
N1 g
We define other quantities accordingly:
( - (32)
B(A1,N2) =f dA 32
212 7\1 B)\
Aa
J(A1,02) =f J, A (33)
A1
A2
I(A1,A23L) = I, (L)ar (3%)
A1
For a gas body for which the conditions giving rise to equation (27)
hold, and fixing A3 and A5, let
1
= 35)
° k(h1h2) (
and \/PAZ -k L
A
1-e dA
() - Sy - ( il (56)
LO B(7\l)7\2) f7\2
dA
AN i
The right-hand side of (36) can be expanded in power series in L:
Az
f {kA'L N O[(k)\'L)s]} By dA
f<£> = M = (37)

From equations (31), (32), (34%), (35), and (36) we find
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LY_L _ (1+4)/(L LV .
f(LO T T T ( 5 <L0> *0 KLO } (38)
where A

2 —
j; (k' - kK(A1,02) 1%By dr
kR

A= (39)

k(A 1,22)%B(A1,00)

The quantity A is non-negative, and is proportional to a weighted mean-
square fluctuation of the absorption coefficient k)'. Its application is in
the following context. OSuppose we want to estimate the outgoing radiative
flux at a point of the surface of a "thick" convex body of gas, supposed
uniformly dense and hot, and in a direction along which the gas body has diam-
eter L.

Substituting k(A1,As) for kp' in equation (27), and using (32) and
(34), we have the approximate formula

T(A1,Ae3L) = [T - e"E(kl’AZ)L]BO\l,?\Z) (40)

This formula will be useful only if A 1is sufficiently small.

In fact, if A > 0, the estimate of I(A1,A\o;L) in formula (40) will be
too large; that is,

T Az Az -k, 1L
[1 - e—k(hﬂz)L]fk By d\ > L (1 - e A )B, an (41)
1 1

The equality in (41) holds identically for all L if and only if A = 0. If
A # 0, the equality holds in (41) if and only if L = 0. The proof of these
results is given in appendix B.

We remark that the quantities A and I(A1,As3L) do not depend on the
absorption ccefficient k)' in any simple way. The values of these quanti-
ties given in the graphs and tables, therefore, will be of limited usefulness
for air densities and temperatures for which processes other than those con-
sidered here (e.g., atomic line radiation, bremsstrahlung, and recombination
of electrons with N++, O++, or N2+ ions) are important sources of radiation
in the wavelength region 400 A < A <1130 A.

Calculation
The numerical computation of the partition functions, cross sections,

absorption coefficients, etc., was programmed for, and performed on, an elec-
tronic digital computer.
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The effective principal quantum numbers and threshold energies for each
photoionization channel were calculated from empirical atomic energy levels
(ref. 4) according to the rules of appendix A. Egquations (18a,b) and (19a,b),
were used, where applicable, to calculate extrapolated quantum defects.
Extrapolated quantum defects for other continuum levels were (in effect) put
equal to zero. The phase shifts obtained from these quantum defects will be
referred to in the discussion as the semiempirical phase shifts. The cross
sections and derived gquantities were calculated at intervals of 1 A in the
photon wavelength. Simpson's rule was used to calculate the quantities
B(A1,22); JA1,A2)5 Lo, &, and I(A1,A23L) /B(A1,\2) for several values of L,
with Ay = 400 A, Az = 1,130 A, for 13 temperatures, 8,000 K < T < 24,000° X,
and 9 densities for each temperature, 1076 < p/po < 10=.

The upper wavelength cutoff was taken to be 1,130 A since none of the
processes considered absorbs or emits light with A > 1,130 A. Because of the
relative smallness of the Planck function B)\(T) for T < 2%,000° XK and
A < 400 A, emission of radiation with A < 400 & was neglected throughout
(in this connection, see figs. 3 and 4).

RESULTS AND DISCUSSION

Description of Graphs and Tables

The results of the calculation are presented according to the following
scheme: (1) Figures 1 and 2 show the photoionization cross sections as a
function of wavelength for six channels each in nitrogen and oxygen, and the
labels on these curves correspond to those in the section "Processes™; (2)
figures 3 and 4 show the monochromatic emission coefficient J% as a function
of wavelength for an average atom of nitrogen or oxygen, respectively, for
various temperatures;6 (3) figure 5 shows the resulting integrated emission
coefficient J = J(%l,%z) of heated air as a function of temperature, for
several densities, where A1 = 400 A and N> = 1,130 A; (4) figure 6 shows the
integral of the Planck function from 400 A to 1,130 A and from OA to = as
a function of temperature; (5) figure 7 compares, for representative cases of
air temperature-density, the values of

(%00 A, 1,130 A; L)/B(k00 &, 1,130 &) = £(L/Lo)

as a function of L/Lo, obtained according to the approximate formula given in
equation (40), and according to the exact formula of equation (36); (6)

figure 8 compares the photoionization cross sections for ground state nitrogen
atoms as obtained from various theories and from experiment; (7) figure 9
compares the radiation from air (p/po = 1072), due to processes of NT and OF
electron photorecombination, as calculated in references 1, 2, and the present
work; (8) table I compares threshold photoionization cross sections calculated
according to various theories; (9) table II gives the values of Ly, A, and

®In terms of these values and the composition data of ref. 22, J) for
air is nyJy (nitrogen) + npdy (oxygen), where npy and np are the total
number densities of nitrogen and oxygen atoms, respectively.
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‘I(400 A, 1,130 A; L)/B(%00 &, 1,130 A) at a few values of L/Ly, for all of
the air temperatures and densities treated.

Discussion of Photoionization Cross Sections

In order to determine the photoilonization cross section of neutral nitro-
gen atoms, Ehler and Weissler (ref. 26) measured the absorption of light as it
passed through a column of nitrogen excited by an electrical discharge. The
measurement was done (1) with the discharge on, with light wavelengths ranging
from 400 A to 720 A; (2) with the discharge off, but before the nitrogen atoms
had recombined into molecules, at a wavelength of (in particular) 650 A. The
results of both versions of the experiment, along with the cross sections
obtained by several theoretical calculations, are plotted in figure 8. In the
second version of the experiment, where the presence of ions, or of nitrogen
atoms in metastable states, was much less likely than in the first, the cross
section was found to be 12.8x10-18 cnr®. 1In the following, we consider only
the first version of the experiment.

There were two principal sources of uncertainty in the experimental
results. The first was the estimation of the concentration of NZ,N2+,N,N+,
etc., in the discharge. On this point Ehler and Weissler implied that they
believed the number which they used for the concentration of atomic nitrogen
in the discharge was in error by, at most, a factor of 2, and was probably in
error by considerably less than this. A relative error in the value taken for
the concentration of atomic nitrogen would lead (roughly) to a similar rela-
tive error in the cross sections but in the opposite direction.

The second source of uncertainty was the random fluctuations of the meas-
ured values of intensity of light which had passed through the plasma. Here
the fluctuations were such that the derived cross sections would all fall
within the limits of the experimental cross sections shown on figure 8, plus
or minus 4X1071® cm® (i.e., if the species concentrations in the discharge are
given and fixed at the values assumed by Ehler and Weissler).

A1l of the theoretical curves in figure 8 represent cross sections for
the process photon plus 1822522p3(*S°) - 1s522522p2(®P) plus free electron, in
atomic nitrogen. The cross-section values of Nardone, et al., were inferred
from their graph of the spectral radiance of the Nt deionization continuum
at 10,000° K (ref. 2, fig. 74). The values ascribed to the "modified" Kramers
formula were calculated according to a method which to a certain extent
accounts for the term structure of the nitrogen atom and ion. The modified
and unmodified Kramers formulas are discussed in appendix C.

The cross sections (fig. 8) of Bates and Seaton were taken from the curve
in reference 27. Since these values are in best agreement with the albeit
uncertain experimental cross sections, we will consider in some detail the
method of calculation used by Bates and Seaton. These authors obtained thresh-
old cress sections for nitrogen by using Hartree-Fock type atomic wave func-
tions in formula (1) of the present work. The 2p function was taken from
Hartree and Hartree (ref. 28), and the zero-energy continuum functions were
taken to be the numerically calculated (in ref. 27) s wave and d wave func-
tions for an electron in the field of an O' ion. The threshold cross
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section of 9.0x1071® cm2 represents the arithmetic mean of the values obtained
by the dipole length formula (10.2X10-18 cm?) and dipole velocity formula
(7.7<10718 cm). The cross-section values for photon energies above threshold
were obtained by making use of earlier work of Bates (ref. 29), where an ana-
lytic formula for cross sections for photoilonization of atoms by ejection of
ls, 28, or 2p electrons was obtained. In reference 29, the continuum wave
functions were taken to be hydrogen-like, and the bound state wave functions
were taken to be analytic functions with variable parameters. Bates and
Seaton chose the parameters in the analytic 2p type function to fit the
nitrogen 2p function of Hartree and Hartree, and normalized the cross sec-
tions obtained (with Bates! formula of ref. 29) by a constant factor so as to
be 9.0X107 cm2 at threshold).

If Ehler and Weissler's empirical cross-section curve is assumed to have
the correct shape (in particular that there is a maximum in the cross section
at about 650 A), the cross sections for the photoionization of nitrogen used
in the air radiation calculations of the present work ("Burgess-Seaton general
formula; semiempirical phase shifts") fall off too rapidly with decreasing
photon wavelength. In view of the fact that Bates and Seaton used hydrogen
wave functions in obtaining the energy dependence of their cross sections, we
carried out a further calculation, according to the Burgess-Seaton formula,
identical to the first except that the extrapolated guantum defects for the
continuum were set equal to zero. The results are shown in figure 8. A
slight improvement in the shape of the curve is noticeable, but the threshold
cross section is now somewhat lower. Within the context of the Burgess-Seaton
method and general formula it would seem, therefore, that better agreement of
calculated cross sections with experiment is unlikely to be obtained with
improved knowledge of the phase shifts alone (we remind the reader of the
averaging process which was done to obtain egs. (19a,b)).

It may be that the Coulomb approximation-quantum defect method is incapa-~
ble of predicting fairly precise photoionization cross sections for nitrogen
and oxygen atoms. Before this can be concluded, however, it should be noted
that the Burgess-Seaton general formula (the values of the various parameters
in reference 3 being considered as part of the formula) would not necessarily
be a precise rendering of the Coulomb approximation even if the phase shifts
were known "exactly." In developing their formula, Burgess and Seaton used,
as a first approximation for the regular and irregular continuum Coulomb wave
functions, the first two terms in the respective series expansions in powers
of the energy (about zero energy) of these analytic functions. At this point
in the calculation their results could only give accurate matrix elements at
or very near threshold, so they undertook to find a functional form involving
parameters, and the appropriate values of those parameters, in order to gen-
erate a formula which gave bound-free matrix elements in agreement with the
complete Coulomb approximation for energies well above threshold. In partic-
ular, they introduced the parameters 7;;:(n¥) as shown in equation (13).

To assess the validity of the Burgess-Seaton formula, Anderson and Griem
(ref. 30) compared the cross sections predicted by this formula for photoioni-
zation of hydrogen with the exact results. They found that the cross sections
derived from the Burgess-Seaton formula (1) were accurate at threshold for
photoionization of H(ls,2s,2p,3s,3p,3d); (2) agreed to within about 5 percent
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up to three times the respective threshold energy for H(2s,3s): (3) were in
fair agreement for H(1ls,2p,3p) up to three times the corresponding threshold
energy, an agreement which was considerably improved by changing the values of
some of the parameters in the Burgess-Seaton formula; (%) were in increasing
disagreement for H(3d) photoionization cross sections for energies increasing
beyond threshold, a disagreement which no consistent set of revised parameters
could rectify. In particular, they found that for photoionization of
H(2p,3p), small (usually downward) changes of 7,,(n*), 1.8 < n* < 3.0, with a
concomitant change in «,,, brought the cross sections calculated with the
Burgess-Seaton formula into better agreement with the exact results in the
energy range considered.

As we have mentioned, transitions to final d wave states tend to be
more probable than transitions to final s wave states for the photoioniza-
tion processes considered in the present work. A downward revision of the
parameter 7,,(n¥), n¥* = 1.0, from the values given in reference 1, would have
the effect of making the cross sections for all these processes fall off less
rapidly with decreasing photon wavelength, while leaving the threshold values
unchanged. Given that the general shape of Ehler and Weissler's empirical
cross—section curve 1s correct, it would certainly be of interest to ascertain
whether a more precise treatment of the Coulomb approximation would in fact
have the effect of decreasing 7,,(n*) for this transition in nitrogen. An
investigation of the possible changes of this and other parameters from the
values given in reference 1, or of more general alterations in the Burgess-
Seaton formula, either of which may result from a more precise use of the
Coulomb approximation, is beyond the scope of the present work, however.

We conclude these comments on nitrogen, and on the energy dependence of
the photoionization cross sections, by remarking that for lower temperatures
(T = 15,0000 K) most of the light arising from processes considered here comes
from recombination of low energy electrons with Nt and 0t ions, so that the
integrated radiation rate of air is most sensitive to the corresponding photo-
ionization cross sections near threshold. For temperatures above 15,000° K
the (possibly) excessive rate of decrease (with decreasing wavelength) of the
photoionization cross sections used in the present calculation will give rise
to an increasing percentage underestimate of the radiation rate of air as
B\(T) flattens out in the wavelength region 400 A <\ < 1,130 A.

We now turn to the question of the threshold cross section for the
process photon + 1522522p*(3P) - 1522522p3(%80) + free electron, in atomic
oxygen. DBates and Seaton (ref. 27), using Hartree-Fock wave functions and
the dipole length formula, obtained a value 2.3X10~18 cm?, whereas we calcu-
lated a value 5.1X10-18 cnP using the Burgess-Seaton formula with semiempiri-
cal energies and phase shifts. The disagreement is striking, all the more so
in view of the good agreement of the nitrogen ground state threshold cross
sections calculated in reference 27 and the present work (10.2x10738 cm? and
11.0x10718 cm?, respectively).

As a first step in resolving this disagreement we calculated the cross

sections for this oxygen process using the Burgess-Seaton formula, the
Hartree-Fock energy (ref. 31) for the 2p wave function, and Hartree-Fock
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phase shifts (quoted in ref. 12) for the continuum functions. The value so
calculated was 1.8x10-18 cm®, a result in fair agreement with the Bates-Seaton
value of 2.3x10718 cm2.

The reasons why this change in input into the Burgess-Seaton formula
results in so great a difference in cross sections are: (1) the value of the
cosine in equation (12) is sensitive to changes in the argument for this pro-
cess for 1' = 2; (2) the Hartree-Fock value for n¥* (= effective principal
guantum number for a 2p orbital for this transition) is 0.890, while the
experimental value is 1.000. The Hartree-Fock and experimental values of n%*
for 2p electrons in the ground state of atomic nitrogen are 0.942 (ref. 28)
and 0.967, respectively, which helps to explain the relatively close agreement
of the two estimates of the nitrogen threshold cross sections.

It is interesting to consider the underlying reason that the agreement
between the Hartree-Fock and experimental n* values is poorer for oxygen
2p* (®P) than for nitrogen 2p3(*SC). We note that the n* values are deter-
mined by the asymptotic forms of the wave functions (see appendix A). If one
of the 2p electrons in 2p3(*s®) is at a great distance from the nucleus,
the remaining core must be 2p=(%P) and not 2p2(D or 8) on account of (at
least) the differences in spins. On the other hand, if the radius of one of
the electrons in 2p4(3P) becomes large, the remaining three electrons may be
found in states of 2p=(%8°,2D°,2P°) with probabilities of roughly 1/3, 5/12,
l/h, respectively, these numbers being the squares of the corresponding coef-
ficients of fractional parentage (refs. 32 and 33). The Hartree-Fock approxi-
mation for 2p*(3P) treats the core terms 2p3(%28°,2D0,2PC) as if they had the
same energy; if, in fact, second-order changes in energy (due to small changes
in the Hartree-Fock 2p wave function between the configurations 2p* and 2p°
are neglected, the Hartree-Fock energy parameter (le\ = l/n*z) will estimate
the weighted average difference in energies between 2p*(®P) and 2p3(*s©,2DO,
2Po), the weighting factors being the squares of the respective fractional
parentage coefficients.” Using the experimental energy differences (ref. L)
we have (in Rydberg units)

1 5 1 _
3 (1.0002) + = (1.2446) + T (1.3690) = 1.194

which is in fair agreement with the Hartree-Fock value of 1.262 (ref. 31).

On the basis of this information, it seems reasonable to conclude that
the cross sections, calculated with Hartree-Fock wave functions, for photo-
ionization of p% by ejection of an electron leaving a p%~1 core, are
probably unreliable when the initial term of p% has more than one parent
term among the terms of p9~1, if the differences in energies among the parent
terms of p9”1 are not small compared to the threshold energy for photo- |
ionization.

“This assertion may be verified for this and other terms of p2, p?
configurations with the help of the theory developed in reference 32, vol. II.
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With respect to the above discussion of photoionization cross sections
and in the light of what has gone before, the following tentative over-all
conclusions may be drawn: (1) Subject to revision depending on the outcomes
of experiments or of more accurate calcwulations, the Burgess-Seaton general
formula is probably capable of giving fair to good threshold cross sections
for the nitrogen and oxygen processes considered here if the correct phase
shifts, etc., are used. In this connection, a closer investigation of series
energy levels for nitrogen and oxygen, and of extrapolation of the quantum
defects to the continuum, particularly for series where the ionic core has
fine structure, is needed (some of the theoretical groundwork has been laid
in ref. 34; see also ref. 9); also, the values of some of the parameters for
the general formula are rapidly varying functions of n¥, and are tabulated
(in ref. 3) on a mesh of points too coarse for certain extrapolation or inter-
polation. (2) In the one case where experimental photoionization cross
sections are approximately known, the cross sections derived from the Burgess-
Seaton formula seem to fall off too rapidly with decreasing photon wavelength.
The simplest explanation of this discrepancy leads to the conclusion that the
same excessively rapid fall-off of the calculated cross sections may be true
for all the processes treated here. A careful investigation of the Coulomb
approximation for bound-free matrix elements must be undertaken to ascertain
whether this (presumed) error lies in the Coulomb approximation itself or in
the values specified by Burgess and Seaton for the parameters in their general
formula.®

Discussion of Air Radiation Calculations
A few remarks are in order on the parts of the air radiation calculations

of Nardone, Breene, Zeldin, and Riethof (ref. 1), and of Sewell (ref. 2),
which are comparable with the results of the present work.

8Late in the preparation of this paper, it has come to our attention that
Peterson (ref. 35) has calculated photoionization cross sections for (among
others) the processes treated in the present work. Peterson, who also used
the Burgess-Seaton general formula, calculated cross sections which differ
(in some cases considerably) from those obtained here. The discrepancy may
lie in part in the fact that Peterson has throughout (incorrectly) interpreted
the extrapolated quantum defects p'(e') of the final continuum states to be
the extrapolated quantum defects of the same series of atomic energy levels as
that which contains the initial, bound state as a member. However, Peterson
essentially cancels out this error for photoilonization from the configuration
2pd (g > 1) by putting all the p'(e') = O for €' > O. Substituting
pu'(e') = 0 for all the continuum states in our own calculation tends to lower
our cross sections and improve agreement with Peterscn's; the differences,
however, are still considerable. We believe that Peterson's cross-section
values are too low. For example, he obtains a value 2.03x10-18 c® for the
threshold cross section for neutral nitrogen (threshold wavelength 852 A), and
0.011x10718 cm” for the threshold cross section for neutral oxygen (threshold
wavelength 911 A). However, we have been unable to deduce the means by which
these values were obtained.
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Sewell used the version of the Kramers approximation given in table I of
reference 23, but did not account for screening; that is, in the notation of
appendix C, Sewell put Zerf = {. Nardone, et al., apparently used a kind of
hydrogen approximation for their matrix elements, taking the over-all wave
functions to be single determinant wave functions® which are not necessarily
eigenfunctions of L, S, or J. Some threshold cross sections for photoioniza-
tion processes inferred from the graphs of Nardone, et al. (ref. 1, figs. 71
and T4; curves for T = 10,000° K) are given in table I.

Apparently neither the results of reference l nor those of reference 2
included recombination of electrons with NV or O ions which were not in the
lowest energy terms of their respective ground configurations. Processes of
this sort, however, were found in the present investigation to add relatively
little to the total rate of light emission, particularly at lower temperatures,
of course. Sewell apparently does not take into account light arising from

2p=(°P) + free electron - 2p-(*S°) + photon
in nitrogen (threshold at 852 A), and
2p°(*s®) + free electron — 2p*(®P) + photon

in oxygen (threshold at 911 A). On the other hand both Sewell and Nardone,
et al., show contributions resulting from the processes

2p2(*s®) + free electron - 2p*(*D) + photon

in oxygen (threshold at 1064 A) and
2p°(*s°) + free electron — 2p*(*S) + photon

also in oxygen (threshold at 1315 A). Both transitions are forbidden if small
magnetic effects in oxygen are neglected.

Figure 9 compares the integrated emission coefficient for air as obtained
in each of the three calculations, for p/p = 1078 (our results are not
easily comparable with those of Nardone, et’ al., at higher densities). For

this density, the value of J{(A1,\z2) = f;z NN for the N' electron and
1
0% electron recombination light (principally in the vacuum ultraviolet) from

hesated air is in reference 1 typically twice that of the present work, and in
reference 2 typically one-third that of the present work.l10

SPrivate communication from R. G. Breene

OMe limits on the integration over J) are 400 A and 1 4130 A in the
present work, 500 A to 2,000 A in reference 1, and about 850 A to 17,000 A
in reference 2. The J(%l,kg of reference 2 includes recombination into
other excited states of N and O. Nardone, et al. (ref. 1) did not define
Pp nor give the source of their data on the comp051tlon of air. We assume
their p, to be the same as ours, 1. 225x1073 g em™3,
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CONCLUDING REMARKS

The photoicnization cross sections for certain levels of nitrogen and
oxygen atoms have been calculated with the Burgess—Seaton general formula
(ref. 3). These results were, in turn, used to estimate the rate of emission
of light by air due to the reverse, recombination processes, at temperatures
from 8,0000 K to 24,0000 K, densities from 10-6 to 102 times normal, and
integrated over wavelengths from 400 A to 1,130 A. Also, a table of data was -
obtained which facilitates estimation of the emitted flux of radiation at the
surface of uniform thick bodies of air.

The photoionization cross sections were compared with the results of
other calculations and the results of the only known relevant experiment
(ref. 26). The values of the nitrogen ground state photoionization cross
section obtained in the present calculation fell within, but near the limits
of, the range of experimental values (including estimated systematic errors)
as determined by Ehler and Weissler. The theory of Bates and Seaton (ref. 27)
gave resultis in better agreement with this experiment as regards the shape of
their cross section versus wavelength curve. An explanation for the discrep-
ancy was proposed and discussed, namely that the Burgess-Seaton formula may
not be an accurate representation of the Cowlomb approximation for bound-free
transitions not close in energy to threshold.

With respect to the estimates of air radiation, these results were
compared with those of Nardone, et al. (ref. 1), and of Sewell (ref. 2), who
used a hydrogen type approximation and Kramers formula (ref. 23), respectively.
For p/pO = 1073, the predicted rate of (mostly vacuum ultraviolet) light
emission by air due to N*t, OF electron recombination (the processes included
differed somewhat among the three works) was calculated by Nardone, et al.,
to be about twice, and by Sewell to be about one-third that calculated here
for 8,0000 K < T < 24,0000 X.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Feb. 2, 1965
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APPENDIX A

DETERMINATION OF SEMIEMPIRICAL ENERGY PARAMETERS

AND REMARKS ON THE COULOMB APPROXIMATTION

It is possible to sharpen the justification given by Bates and Damgaard
(ref. 8) for their prescription for calculating the bound state energy param-
eters E from observed atomic energy levels. They proposed that, for an
electron in a given nl shell in the atom, |E| be taken as the energy
required to remove that electron from the atom. In fact, it is reasonable to
use a value of E which depends both on the initial state of the atom, and
on the energy state of the residual core of the atom, the core being taken as
approximately unchanged in a radiative transition. To see how this comes
about, it is convenient to begin with the Schrddinger equation for the energy
eigenstate of the atom of interest (nonelectrostatic interactions are

neglected):
N N N
2 27 2 -
). <_v1 ) r_J D) v) e )
i=1

i=1 j=i+2

where N is the number of electrons, Z 1is the charge of the nucleus, ry and
rij are the distances of the ith electron from the nucleus and jth elec-
tron, respectively, and the wave function ¥, a function of 3N coordinates
(spin coordinates are suppressed), satisfies the boundary conditions for a
bound state of the atom with total energy Ep (in Rydberg units).

As the distance from the nucleus of one of the electrons, say the first,

becomes large, the difference between ri and rij, J =2, . . . , n, becomes
relatively small, so that for ri large,

- 2(Z—N+l Z( > Z z o YEy 2

=2 Jj=i+a

to a first approximation. To the same accuracy, then, the wave function must

tend in this limit to a sum of functions V¥ (rl, . « . , rN) each of which is
a product function of a function q (ri) and a function Qm(zg, C e ey rN)
that is,
¥ry, - - - 5Ty 75 Z@Q(E)%(gg: e Ty (A3)
a

Furthermore, &, and ¢, must satisfy, respectively,
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N
2 2z 2 -
1=2

and

<—V12 - f.—f) 9y (ra) = (Ep - E)qy(ra) (45)

where { =2 - N +1. It is clear that the Eg and & must be eigenvalues
and eigenfunctions of the N - 1 electron core.l The value Ep ~ Eq becomes,
on further separation of variables in equation (5a), the E parameter in the
resulting radial wave equation, where the radial wave function has its asymp-
totic form given by equation (7); that is,

r19,(ra) ~const x rln*e—rl/n* X {eigenfunction of Li® with eigenvalue 1+1))

(A6)
where

n¥ = §

Ee. - BT

The energy states of the N - 1 electron core corresponding to the eigen-
functions @&, are the "parents" of the state (with wave function ¥) of the
N electron atom, and while x-ray terms, the continuum and other highly
excited states of the core, may appear in the sum in equation (A3), the corre-
sponding @, will be rapidly decreasing exponentials with, in some sense,
"small" amplitudes.

A similar asymptotic form exists for the final, continuum states of the
photoionization process, with the difference that here at least one of the
Ep - Ey 1is positive, and correspondingly 1r3 times the radial part of ¢
behaves as in equation (6). If we now approximate the matrix element of the
position operator by neglecting the contribution for small r3;, the expansion
of equation (A3) may be used for the wave functions; nonzero contributions to
the matrix element will come from overlap of the parts of the initial and
final wave functions for which the ionic core is in the same state. (If
appropriate changes are made, identical contributions will be obtained for
large To, Tsy « « » , rN.) Only the core states which appear in a single
configuration approximation, such as the Hartree-Fock model, will be con-
sidered here, however.

None of this gives any information on the (implicity given) normalization
constants of the terms in the asymptotic form for ¥ (eq. (A3)). Approximate

1A result used (also without proof) by Bely, Moores, and Seaton (ref. 34).
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values for some of these constants may be calculated from the quantum defect
method (ref. 7), or from solutions of the Hartree-Fock equations for the atom.
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APPENDIX B
ROUGH PROOF OF RELATION (41) AND OF THE STATEMENT FOLLOWING

The essential result to be obtained can be expressed simply. Given real
functions f(x) and w(x) defined and bounded in absolute value for a <x <b,
a <b; assume f integrable, w continuous (and therefore integrable),

w(x) >0 for a<x<b (B1)

and

b
JQ f(x)w(x)dx = 0 (B2)

let o be a real number, 6 be a positive real number, and let

b
5 = ej; [£(x) 1Pw(x)ax (B3)
b af(x)
a(a) - fa (@) _ 1)u(x)ax (84)
Then it follows that
g(a) >0 (85)

where the equality holds identically in (B5) if and'only if ® = 0, and, 1if
& # 0, the equality holds if and only if « = O.

Proof: The restrictions put on f and w imply first, that the integrals in
(B2), (B3), and (B4) exist; second, that

f;’ w(x)ax > 0 (86)

and third, that the derivatives of g(a) with respect to a exist and that
differentiation and integration can be interchanged on the right-hand side of

(B4). In particular,

g'(a) = f: f(x)eaf(x)w(x)dx (B7)

and
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b af(x
gt (a) = /; [£(x)]%e 2 )W(X)d_x (88)

0 and g'*(a) >0 for any «. In fact if, for any

Evidently g(0) = g'(0) =
= 0, then f(x) mist be zero almost everywhere for

particular «, g"( )
a <x<h.

According to Taylor's theorem, if n > 1 1s an integer and the nth
derivative g(n)(a) exists and is finite everywhere in the open interval

(c,d), and g(n_l)(a) is continuous in the closed interval [c,d], then for any
ae(c,d) there is an interior point ay, ¢ < ay < &, such that

T ™) () (a)
6@ = a(e) + ) Bl o e o) (oo
k=1

The conditions of Taylor's theorem are satisfied for g(a) as defined in (BL)
if ¢=0,d >0, and n=2. Thus for O <a < d, there is an Qg,
0 <oy < @, such that

gla) = (1/2)g" " (ag)e (B9)

Since g''(agy) is non-negative for all ag, g(a) >0 for 0 <a < d. But 4
is positive and otherwise arbltrary so that g(a) > 0 if @ > 0. An argument
similar to the above for h(a) = g(-a) shows g(a) >0 for @ < O. Since
g(0) = 0, g(a) >0 for all a.

If & = 0 then f(x) = 0 almost everywhere and g''(a) = 0 for all «a.
By (B9) and its extension for o < 0, and since g(0) = 0, g(a) = 0 for all
«. Conversely,if g 1is identically zero, then g'!'(0) must be zero, and
hence & = 0.

Whatever the value of 8, = 0 implies g(a) = 0. If g(a) = O for
some % 0, say @3, and O % O, then by (B9), or 1ts extensicn to negative
&, there is an oy such that O <oy <azg if ay > 0, or o <oy <0 if
oy < 0, and

gla1) = 1/2 g'"(ap)as” (B10)
But a3 # 0 and g''(ag) # O since & # 0, so the assumption that g(ai) =
for a; # 0 leads to a contradiction. Hence, if & # 0, g(a) can be zero only

if o = 0, and the proof of the theorem is complete.

To apply the results of the theorem to the statement in the text,
multiply relation (41) by exp[k(A1,A2)L] and let

a =L ‘
X =N,a=»A1, b =Nz
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£(x) = k(A 1,02) - I
w(x) = By
_ A -
6 = [k(xl,xz)z - Bkdx] *
A1
5 = A

The assertions in this appendix have been based on theorems stated in
(1) F. Riesz and B. Sz-Nagy, "Functional Analysis," Ungar, New York (1955);
(2) E. T. Whittaker and G. N. Watson, "A Course of Modern Analysis," McMillan,
New York (194%7); (3) T. M. Apostol, "Lectures in Advanced Calculus,"
California Institute of Technology, Pasadena, California (1954).
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APPENDIX C ’
THE KRAMERS FORMULA

Kramers semiclassical approximation (ref. 36) for the cross section for
photoionization of a hydrogen-like atom is

g = O’ e Omz*

Cl
3J3 nécv3n5 (c1)

where Z 1is the atomic number of the nucleus, v is the frequency (exceeding
threshold) of the photon, and n is the principal quantum number of the
electron in its initial bound state.

To the end of obtaining a simple formula for estimating photoionization
cross sections for many electron atoms, we first introduce an effective Z
and, second, apply a multiplicative correction to the right side of (c1), in
order tc account for the differences in ionization energies and in structural
properties, respectively, between one-electron and many-electron atoms.

We make the following (by no means unigue) choice of an effective Z,
which is suggested in reference 23: If TI,; is the threshold energy (in
Rydbergs) for a photoionization process of the atom of interest in which an
nl electron is ejected and initial atom and final ion core are in definite
or approximate energy levels, we choose

Z = Zopp = 0N Iny (c2)

Thus Zerr depends on the photoionization process considered, except for
hydrogen-like atoms.

Msking use of this definition of Z = Zerf, (Cl) can be brought into the
form of equation (11) in the text:

Ly 2 Ing + K [16 <; Iny :f]
= 3 C
? 3 a0 In 1% ny3 \In; + ¥* (e3)

where In; + k® is the energy (in Rydbergs) of the incoming photon. The

term in brackets in (C3) corresponds to the sum in (11); n is still the
integral principal quantum number of the initial state of the jumping electron.
We define the unmodified Kramers formula to mean (03).

When the ejected electron is equivalent with other electrons in the
initial state (and all n? shells containing electrons are closed other than
the nl shell containing the ejected electron), we note in equation (16) of
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reference 3 that the only change in the constants C;: (see eq. (1) in the
text) from the inequivalent electron case is that they are multiplied by the
1'-independent quantity

a} (29sL{|29-2(s*'Lrr)1sL) |2

Here q is the number of equivalent electrons in the initial nil shell of
the jumping electron and (ZqSL{'Zq_l(S"L")ZSL) is a coefficient of frac-
tional parentage (refs. 3, 32, and 33); 1 is the initial angular momentum
guantum number of the jumping electron, and SL, S''L!' are total spin and
total orbital angular momentum of the initial atom and final ion core,
respectively.

This fact suggests the writing of the following "modified" Kramers
iformula (adapted from Armstrong, Holland, and Meyerott, ref. 37):

= b ZM q Q-1fqrey 11 2 16 Inz >4:| L
| 5 @A "1z q|(2%sL{ |19 (s L) 28L) | A\ = (ck)

If the ejected electron is not equivalent with other electrons, g = 1, the
fractional parentage coefficient is 1, and the cross-section formula reduces

‘to (c3).

These modifications can at best account for only the grossest properties
of many-electron atoms. Nevertheless, the few examples given in table I and
figure 8 show that at least for threshold cross sections, the values obtained
by the modified Kramers formula are in fair to good agreement with cross
sections calculated with the more elaborate Burgess-Seaton general formula.

{ That this is the case is not necessarily surprising since it might be expected
that the quantities g(n*1;e'l') (defined in eq. (10) in the text), in view
of their lack of explicit dependence on atomic number Z or on ¢{ (see
symbols), would be insensitive to changes in Z or {, particularly for 2p

ccontinuum d wave transitions. Most of the differences in cross sections

‘emong the transitions treated in this paper are due to differences in thresh-
old energies, fractional parentage coefficients, and numbers of electrons in

the 2p shell.
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Figure 5.- Integrated emission coefficient for air, J = J (400 A, 1130 A&).
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Figure 6.- Selected integrals for the Planck function.
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Figure 9.- Comparison of predictions of integrated emission coefficient for air.
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